skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuming Han, Zixiang Xiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyanskiy [1] proposed a framework for the MAC problem with a large number of users, where users employ a common codebook in the finite blocklength regime. In this work, we extend [1] to the case when the number of active users is random and there is also a delay constraint. We first define a random-access channel and derive the general converse bound. Our bound captures the basic tradeoff between the required energy and the delay constraint. Then we propose an achievable bound for block transmission. In this case, all packets are transmitted in the second half of the block to avoid interference. We then study treating interference as noise (TIN) with both single user and multiple users. Last, we derive an achievable bound for the packet splitting model, which allows users to split each packet into two parts with different blocklengths. Our numerical results indicate that, when the delay is large, TIN is effective; on the other hand, packet splitting outperforms as the delay decreases. 
    more » « less